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Reflection of an electromagnetic pulse incident on a nonlinear medium
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The reflection and transmission of an electromagnetic wave pulse incident on a strongly nonlinear medium
are considered. An exact analytical solution is found for a rather general medium model that is characterized
by two arbitrary parameters. It is shown that almost all the incident energy of some pulse forms can be
reflected at large amplitudes, whereas small amplitude fields are transmitted through the medium. For other
pulse forms, part of the reflected pulse can reverse its polarization due to the time dependence of the reflection
coefficient.@S1063-651X~97!08212-3#

PACS number~s!: 52.35.Mw, 52.35.Nx
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In the past, there has been a great deal of interest@1# in
investigating various nonlinear aspects of powerful la
beams which propagate through nonlinear dispersive me
The nonlinear effects considered so far include parame
instabilities, self-focusing, specular reflection, etc. Thus
emphasis was placed on the radiation-pressure-induced
sity fluctuations and the temporal and spatial modulations
intense radiation, as well as the self-guiding of laser bea
through self-induced density channels.

In this Brief Report, we shall consider the propagation
a powerful electromagnetic wave pulse in a strongly non
ear medium. Contrary to the traditional approach@1#, the
electric displacement of the medium will be modeled by
wide class of functions which arenot described by the sum
of a linear and a small nonlinear correction. Such media
be of interest as power limiters protecting for damages
strong electromagnetic pulses of natural or manmade ori

We will calculate the reflection coefficient, and show th
it can have a peculiar time dependence, thus changing
amplitude as well as the polarization of the trailing part
the reflected wave. Such anomalous reflection phenom
can also occur in nonstationary plasmas@2,3#.

Let us consider a transverse, linearly polarized, elec
magnetic wave propagating along thez direction in a lossless
isotropic nonlinear dielectric. The displacement vectorD is
supposed to be a function of the electric field. We thus h
to solve the two Maxwell equations
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whereD5D(E), E is thex component of the electric field
B is the y component of the magnetic field, andc is the
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speed of light. Alternatively, we could have considered
circularly polarized wave propagating along an exter
magnetic field, and interpretedE as Ex1 iEy and B as
Bx1 iBy , thus including electron-cyclotron waves, whistler
etc.

Instead of looking for solutions withE5E(z,t) and
B5B(z,t), we shall solve Eqs.~1! and ~2! below by a
hodograph transformation@2#. We will thus regardE andB
as independent variables, and try to find solutions

z5z~E,B! and t5t~E,B!. ~3!

Keeping in mind that Eq.~1! should be automatically sat
isfied, we then introduce a new functionc5c(E,B) defined
from t[2]c/]E and z[]c/]B. Equation ~2! is accord-
ingly replaced by

]2c

]E2
2

]D

c2]E

]2c

]B2
50. ~4!

Instead of c we now introduce the new function
F[cAU, where U5U(E)5@11(s1E/E1)1s2E2/E2

2#21.
Here E1 and E2 are constants,s1561, ands2561. Fur-
thermore, we introduce the new dimensionless varia
w5w(E) from w[(1/Ec)*0

EU(E)dE, where the normaliz-
ing constantEc represents a characteristic field that will b
specified below. We then obtain, from Eq.~4!

1

Ec
2

]2F

]w2
2

1

c2U2

]D

]E

]2F

]B2
5p2F, ~5!

where p25(1/2U3)(]2U/]E2)2(3/4U4)(]U/]E)2[(1/
4E1

2)2s2 /E2
2 . Our particular choice ofU above has thus

resulted in aconstantvalue ofp.
In order to be able to solve Eq.~5!, we shall now limit our

analysis to the~rather general! class of functionsD(E) for
which (]D/]E)/U2 is equal to a constant~which we denote
7315 © 1997 The American Physical Society
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by n0
2). Furthermore, we determine the normalization co

stant Ec to be equal to 1/p, and normalizeB so that
b5pcB/n0. Equation ~5! is then simplified to the Klein-
Gordon equation

]2F

]w2
2

]2F

]b2
5F. ~6!

Using standard solutions of Eq.~6!, we have thus been
able to deduce a rather general class of solutions to the
tem of equations~1! and ~2!. Those solutions involve two
characteristic medium parametersE1 andE2.

In order to illustrate our solution above, below we sh
consider the case where the parameterE15` ands2521,
i.e.,

U5~12E2/E2
2!21 and p51/E2 . ~7!

It is then easy to find simple explicit expressions forD and
w, or

D5
E2n0

2

2 Farctanhj1
j

12j2G ~8!

and

w5 1
2 ln

11j

12j
, ~9!

wherej[E/E2 with 0<j,1.
Although the specific choice~8! does not represent th

general case, it can closely model practical nonlinear me
such as those occuring in nonlinear geometric optics@2# as
well as in plasma physics@4#, where one has the possibilit
of varying the initial electromagnetic wave envelope on
count of the harmonic and radiation pressure nonlinearit
Several examples of such media can be found in Refs.@2#
and @4#, where the electric field dependence of the displa
ment vector differs considerably from the well known Ke
and saturable nonlinearities.

As a solution of Eq.~6!, we first choose

F5A cosh@Mw2~M221!1/2b#, ~10!

whereA andM (.1) are constant parameters. From Eq.~3!,
we then have

2
ct

L
5

j

~12j2!1/2
coshh2

M

~12j2!1/2
sinhh ~11!

and

z

L
5

~M221!1/2~12j2!1/2

n0
sinhh, ~12!

where h[Mw2(M221)1/2b, and whereL[2pcA is a
characteristic scale length defined by the nonlinear prope
of the medium.
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Using Eqs.~11! and ~12! to express sinhh and coshh as
functions of z,t, and j, and using the relation
cosh2h2sinh2h51, we then obtain the equation

F z

L
2

vt

L
~12j2!G2

2S zj

LM D 2

5j2~12j2!
v2

c2
, ~13!

wherev[c(121/M2)1/2/n0.
Using Eq. ~13! we have thus foundj ~the normalized

electric field! as a function ofz and t. Insertingj into Eq.
~12!, and using Eq.~9!, we can then directly also findb ~the
normalized magnetic field!.

Let us finally consider a plane wave incident fro
vacuum (z,0) on a nonlinear medium (z>0). From
]c/]Buz5050 we have the boundary conditio
Mw02(M221)1/2b050. By means of Eq. ~9!, or
2w05 ln @(11j0)/(12j0)#, we rewrite that relation as

E0

E2
5tanh@cB0~121/M2!1/2/n0E2#, ~14!

where E05E(t)uz50 ,B05B(t)uz50 ,w05wuz50, and b0
5buz50.

The incident wave is transmitted and reflected in a st
dard manner, where the continuity of the tangential com
nents of the total electric and magnetic fields has been ta
into account. We thus find the reflection coefficie
R([ur u2) from the relation

11r

12r
5

E0

cB0
, ~15!

i.e.,

r 5
~v/c!2G~j0!

~v/c!1G~j0!
, ~16!

whereG(j0)5@arctanh(j0)#/j0.
From Eq.~13! we easily find thatj05(11L2/c2t2)21/2.

We also note that Eq. ~16! changes from
r'(v2c)/(v1c),1 when j0'0 to r'21 when j0'1,
which indicates a strong self-screening effect.

As another solution of Eq.~6! we may choose
F5A cos@Mw2(11M2)1/2b#, whereA andM are constant
parameters. The calculations are analogous to those ab
Instead of Eq.~13! we here obtain the same terms, but with
different sign on the second term on the left-hand side. F
mula~16! is also essentially the same, withv/c now replaced
by (111/M2)1/2/n0, andG by @arctan(j0)#/j0.

To summarize, we found that the front of the field pul
propagates with the velocityv5(c/n0)u171/M2u21, which
is equal to the speed of light inside the medium (c/n0) times
a factor which depends on the pulse parameterM that is
related to the front steepness. Furthermore, we note tha
electric and magnetic field envelopes of the transmitted pu
arenot proportional to each other, and that our first soluti
~10! shows a strong self-screening effect (r→21 when
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j0→1) which means that our nonlinear medium can act a
power limiter. With our second solution of Eq.~6! it turns
out that the coefficient r changes sign when
(arctanj0)/j05v/c, i.e., the nonlinear reflection changes t
polarization of the trailing part of the reflected pulse. Th
-

a

,

depending on the chosen solution, we can have either s
screening without change of polarization, or polarization
versal but then without the self-screening effect.
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